微粒化 第19巻68号

2010年12月

目 次

	持集号まえがき 特集「軸対称液体噴流における微粒化現象の基礎」	•			•			•	脇本	辰郎	 •	115
解	『説 レイリー不安定から始める微粒化の基礎		•		•	•	• •		脇本	辰郎	 •	116
舸	『 説 並行気流中での円筒状液噴流の不安定変動と分裂について (ケルビン・ヘルムホルツの線形不安定性理論を中心に ・・・・・・・・	.)		•	•	•		•	鈴木	孝司	 •	123
解	『説 回転体による液体微粒化機構 ・・・・・・・・・	•		•	•	•		•	大黒	正敏	 •	131
	₹ 説 液糸からの液滴生成機構と表面張力波の役割 ・・・・・	•	•		· 刹	斤城	氵淳	史	. , 梅	寸 章	 •	137

会 告

編集後記	・・・・・告	1 維持会員入会申込書	 • •	告 17
第 19 回微粒化シンオ	ポジウム ・・・・・告	2 会員名簿の訂正と変更届	 • •	告 18
2010年度第1回 理	E事会議事録・・・・・告	7 投稿規定	 • •	告 29
会則・細則	・・・・告	0 執筆要綱	 	告 21
入会案内	・・・・告	2 原稿割付見本	 • •	告 24
維持会員入会案内	・・・・告	3 原稿表紙	 • •	告 27
入会申込書	・・・・告)	6		

表紙写真の説明

題目:液体噴射初期の発達過程大阪産業大学 坂東幸輔氏,高城敏美先生,服部廣司先生,成宮 喜久男先生 ご提供

右図は単円孔ノズルから雰囲気圧力 0.1MPa の窒素中へ軽油をノズル開弁圧 32 MPa で噴射した場合の実験写真である.噴射先端から細い液柱が伸びている様子が観察される.このような実験を公式に発表された例を筆者は知らない.では,どのようにしてそのような液柱が発せられるのだろうか,数値解析で調べてみた.

左図は同様の条件で数値解析を行った結果である.ノズル入口(内径 0.3 mm)は写真の上流 2 mm の位置で,液の初期条件として平坦な速度分布を与えた.ノズルを出る頃には先端外周部から液が伸び,さらに,中心部と外周部に分かれ,中心部へ伸びた液が衝突することによって,下流方向に細い液柱が伸びるとともに,上流側にも細い液柱が伸びることが解った.また,外周部へと向かう液が液滴となっている.

計算で予測するには ,特に工夫をしていない . ただし ,空間刻みが軸方向 ,半径方向ともに $2\,\mu\,m$, 時間刻みが 1.0e-9 sec であり , 比較的小さいと考えられる .

Atomization Journal of the ILASS-JAPAN December 2010 Vol.19, No.68

CONTENTS

Preface of Special Issue	
Basic Atomization Mechanism of axisymmetric liquid jet	
· · · Tatsuro WAKIMOTO	• • • • • • • 115
Review	
Basic Seminar on Atomization Mechanism caused by Rayleigh Instability • • • Tatsuro WAKIMOTO	116
Review	
Unstable Wavy Motion and Breakup of Cylindrical Liquid Jet in Co-curre	nt Gas Stream
(A Note on Classical Kelvin-Helmholtz Linear Instability Theory)	
· · · Takashi SUZUKI	• • • • • • • 123
Review	
Atomization Mechanism by Means of Rotary Bell Cup	
· · · Masatoshi DAIKOKU	• • • • • • • 131
Review	
Mechanisms of droplet generation from a ligament and the role of capillar	ry waves
· · · Junji SHINJO, Akira UMEMURA	• • • • • • 137