微粒化 第19巻67号

2010年9月

目 次

	拝号まえがき 特集「微粒化による製造技術」			• • • • • 大	嶋 元啓・・	• 73
	・説 固体酸化物形燃料電池の電解質	質薄膜製作への静電	噴霧の利用	••••	予村 浩司・	• • 74
	『 説 減圧沸騰噴霧の適用による CV	/D 新気化供給法の ・・・・大嶋 元啓		千田 二郎 ,石	5田 耕三・	• • 80
	『 説 サスペンションプラズマ溶射打	支術・・・・・		· · · · · 金	令木 雅人・	• • 91
	『説 液体噴霧操作を利用した固体微	数粒子製造プロセス		· · · · · · · · · · · · · · · · · · ·	3川 善幸・	• • 96
	i 文 減圧沸騰噴霧を利用したナノ* ・・・・・榊原 大和 , 林		,飯野 公夫, 芝	医 正彦,赤	松 史光・・	• 102
)文 減圧沸騰噴霧の火炎内ナノ粒子 ・・・・・福島)	子合成法への展開 大地 , 宮本 英典 ,	大嶋 元啓 ,石	G田 耕三 , 千	田 二郎・・	• 110
編第会入維	3 19 回微粒化シンポジウム 注則・細則	・・・・・告 4 ・・・・・告 6 ・・・・・告 7	会員名簿の訂正の 投稿規定	と変更届		告 12 告 13 告 15 告 18

表紙写真の説明

題目:液体噴射初期の発達過程大阪産業大学 坂東幸輔氏,高城敏美先生,服部廣司先生,成宮 喜久男先生 ご提供

右図は単円孔ノズルから雰囲気圧力 0.1MPa の窒素中へ軽油をノズル開弁圧 32 MPa で噴射した場合の実験写真である.噴射先端から細い液柱が伸びている様子が観察される.このような実験を公式に発表された例を筆者は知らない.では,どのようにしてそのような液柱が発せられるのだろうか,数値解析で調べてみた.

左図は同様の条件で数値解析を行った結果である.ノズル入口(内径 $0.3~\mathrm{mm}$)は写真の上流 $2~\mathrm{mm}$ の位置で,液の初期条件として平坦な速度分布を与えた.ノズルを出る頃には先端外周部から液が伸び,さらに,中心部と外周部に分かれ,中心部へ伸びた液が衝突することによって,下流方向に細い液柱が伸びるとともに,上流側にも細い液柱が伸びることが解った.また,外周部へと向かう液が液滴となっている.

計算で予測するには ,特に工夫をしていない . ただし ,空間刻みが軸方向 ,半径方向ともに $2\,\mu\,m$, 時間刻みが 1.0e-9 sec であり , 比較的小さいと考えられる .

Atomization Journal of the ILASS-JAPAN September 2010 Vol.19, No.67

CONTENTS

Preface of Special Issue	
Production Technology by Atomization	· · · · · · · Motohiro OSHIMA · · 73
Review	
Application of Electrostatic Spray for Fabrication of T	hin Electrolyte of Solid Oxide Fuel Cell
· · · Hiroshi NOMURA	• • • • • • • 74
Review	
Proposal of New Supplying Evaporation Precursor Me ••• Motohiro OSHIMA, Daichi FUKUS	
Kozo ISHIDA	• • • • • • 80
Review	
Suspension Plasma Spraying	
· · · Masato SUZUKI	• • • • • • 91
Review	
A Fabrication Process of Solid Particles by Liquid Ator	mization Technique
· · · Yoshiyuki SHIRAKAWA	• • • • • • 96
Paper	
Nanosized Particle Synthesis by Flash Boiling Atomiz	ation
· · · Yamato SAKAKIBARA, Jun HAYA	SHI, Koji SASAKI, Kimio IINO,
Masahiko SHIBAHARA, Fumiteru	AKAMATSU · · · · · · 102
Paper	
Development of Flame Synthesis Method for Nanopar	ticles by Flash Boiling Splay
· · · Daichi FUKUSHIMA, Hidenori MIYAMO	OTO, Motohiro OSHIMA, Kozo ISHIDA,
Jiro SENDA	• • • • • • • • • • • • 110