

長距離顕微シャドウグラフ撮影によるディーゼル噴霧の液滴径計測

Measurement of particle diameter in diesel spray by long-distance microscopic shadow-graph photography

八房 智顯,	木戸口 善行,	アブドゥラー アダ	ム, 五味 智紀
(Tomoaki YATSUFUSA)	(Yoshiyuki KIDOGUCHI)	(Abdullah ADAM)	(Tomonori GOMI)
徳島大学	徳島大学	徳島大学	いすゞ中央研究所
(Tokushima Univ.)	(Tokushima Univ.)	(Tokushima Univ.)	(Isuzu Advanced Engineering Center, Ltd.)

The present study investigates the effects of injection pressure and ambient temperature on distribution of number density and diameter of fuel droplet in diesel fuel spray by using long-distance microscopic shadow-graph photography. The large number of fuel droplets was statistically analyzed by newly developed algorism. It was clarified that the larger-size particles exist closer to the spray tip. Droplets distribution becomes uniform as time passes. Higher injection pressure promotes atomization throughout the whole spray boundary. High ambient temperature has great effect on formation of small-size droplet at early time of injection period, in particular, up and midstream of the spray.

Keywords: Atomization, Spray, Nano-spark light source, Shadow-graph, Optical measurement

1. はじめに

ディーゼルエンジンはガソリンエンジンやガスタービンエ ンジンなどの他の内燃機関に比べて熱効率が高く低燃費であ るため、昨今の石油資源の枯渇による省エネルギー化や CO2 排出量削減の要求を満たす動力源である.しかし、圧縮した 高温高圧空気中に燃料を噴射し着火・燃焼させるというディ ーゼル特有の作動原理のため、燃焼場中の燃料濃度が不均一 になり NOxや微粒子などの有害物質の排出量が多いという問 題点を有する.このようなディーゼルエンジンの排気は、燃 料噴射に大きく依存する.中でも燃料液滴の微粒化は低汚染 燃焼をする上で特に重要な要素であり、燃料噴射パラメータ が時間的・空間的な液滴数および液滴径の分布に及ぼす影響 を把握する必要がある.液滴径の測定には、レーザーを用い た方法⁽¹⁾⁻⁽³⁾が一般に広く用いられているが、これらの多くは噴 霧のごく一部の領域を通過する液滴を計測対象とするもので あり、空間的な液滴分布を統計的に把握することは難しい.

本研究は実機関の圧縮端を模擬した雰囲気場に軽油を高圧 噴射して形成させた燃料噴霧を,ナノスパークを光源とする 長距離顕微シャドウグラフ光学系(4)-(6)により高解像度・高階調 で撮影した.噴霧の撮影像は,従来の局所領域を対象とする 解析法⁽⁷⁾では難しかった広範囲かつ多数の液滴群について,粒 径および位置の統計的な解析⁽⁸⁾が容易にできる液滴解析アル ゴリズムを新たに構築し,燃料噴射圧力および雰囲気温度が 時間的・空間的な液滴・液滴径分布に及ぼす影響を調べた.

2. 実験装置

2.1 高圧定容容器および燃料噴射装置

図1に本実験で用いた急速圧縮機の概略を示す. 燃焼室は 直径60mm,幅20mmの円筒形であり、フリーピストンによって 任意の雰囲気条件が作られる. 燃焼室の両側には直径60mmの

原稿受付:2009年5月12日

パイレックス製観測窓が設置され、内部が可視化される. 燃 焼室内には窒素・アルゴン混合気が充填され、燃料はコモン レール噴射装置によって噴射される.噴射ノズルは単孔で、 噴孔径 0.18mm、噴射角度はノズル軸から 15°である. この システムでは噴射圧力 40~150MPaで燃料噴射が可能である.

2.2 撮影光学系

図1には、ナノスパークを光源とする長距離顕微シャドウ グラフ撮影光学系も示す.ナノスパーク光源は発光半値幅が 30nsの白色光源である.この発光期間において最も速度が速 いと思われる噴霧先端付近の液滴(~40m/s)の移動距離は 1.2µm 程度であり、計測される液滴直径よりも十分に小さく、 液滴はほとんど静止像として捕らえられる.光源から放射さ れる光は、レンズによって平行光にするが、球面収差・色収 差を抑えて光の平行精度を高めるため、カメラレンズ(50mm、

Fig. 1 Schematics of rapid compression machine and shadow-graph optical system

Fig. 2 Photographed areas in visualization field

Binary image

Fig. 3 Production of binary image

F1.4)を用いた. また,光量を調整するため ND フィルタを 用いた. 撮影側にはマクロレンズ (PENTAX, MACRO 135mm, F4) をカメラボディーとは独立に設置し、結像用フィルムを 設置したカメラボディーを結像位置に設置した.撮影用フィ ルムには、ISO400の6×7版白黒ブローニーフィルム(Fuji NeopanPresto 400) を用い,約 16×20mm の可視化領域を フィルム面上に 3.5 倍の倍率で撮影する.本倍率では,噴霧全 体を図2に示す3区画に分けて撮影した.

フィルムに撮影した画像は、スキャナ(EPSON GT-X970) を用いて 3200dpi, 16bit で読込み, TIFF 形式のデジタルデ ータとした. なおデジタル変換した画像の解像度および階調 数は, それぞれ 2.2µm/pixel, 65536 階調となる.

3. 液滴径解析アルゴリズム

3.1 フィルム画像上の液滴の探索

TIFF 画像データの解析には、データ解析ソフト (IGOR pro6.0)を用いた.まず,画像中から液滴粒子像の候補を大ま かに探索するため、二値化によって液滴粒子を抽出した.二 値化の閾値の算出には,解析画像から小範囲を切り取り, の範囲の平均輝度と最小輝度の輝度差から以下のように決定 した.

<i>Threshold</i> = (<i>Avg_intensity</i> – <i>Min_intensity</i>)	*α
+ Min intensity	(1)

ここで, Avg_intensity, Min_intensity はそれぞれ切り取った範 囲の平均輝度,および最小輝度であり,αは閾値の基準である. 画像の切り取り範囲は 250pixel 角、閾値の基準αは 0.8 とし た. 図 3 はある 250pixel 角の領域について、上記αを 0.8 と した二値化画像と元画像を比較して示したものである.この 二 値 化 画 像 か ら , IGOR 標 準 関 数 で あ る ImageAnalyzeParticles 関数を用いて粒子を検出した.本関 数からは粒子の位置情報が得られるため、この位置情報と二 値化画像,元画像を利用して粒子の輝度重心を求めた.

3.2 粒子の特徴長さの抽出

個々の粒子画像から特徴長さを算出するため、元画像(輝 度分布画像)から輝度勾配を画像化した輝度勾配分布画像を 作成した.なお、用いた輝度勾配△Iの定義は以下のとおりで ある.

$$\Delta I = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2} \tag{2}$$

図 4 にある粒子近傍の元画像とそれから作成した輝度勾配 分布画像を示す. 図中の白十字は粒子の輝度重心である. 図4 左上の線図は、輝度重心から全方位への画素の輝度を、輝度 重心からの距離に対して示したものであり、線図中の実線は その平均値を示している.輝度重心から放射状に解析するこ とで、粒子境界のような同心円状に分布する形質は線図上に 実線で示した平均曲線の変化としてあらわれるが、他の粒子 による輝度変化 (ノイズ) は輝度重心から見ると周方向に対 して一部でしかないため、相対的にノイズは小さく抑えられ る.結果として,平均曲線は粒子境界以遠でほぼ一定になる. しかし輝度分布の平均曲線は、その変化が比較的滑らかであ るため、特徴長さをこれから見出すことは難しい.

一方,図4左下の線図は,輝度重心からの輝度勾配分布を

Fig. 4 Intensity and gradient of intensity profiles from the intensity center of particle

Details of profile on intensity gradient Fig. 5

示したものである.輝度勾配は、粒子境界付近で大きくなり、 粒子中心と粒子外で小さくなる.輝度分布の場合と同様に、 他粒子によるノイズは相対的に小さく、平均曲線にはその影響があらわれにくい.したがって、実際の粒子境界は輝度分 布の平均曲線がピークになる辺りに存在すると考えられる. しかし、単にピーク位置を粒子の特徴長さとした場合、誤差 を包含しやすいため、ピーク形状から特徴長さを決定する必 要がある.

図 5 は、典型的な輝度勾配のピーク形状を示したものであ る. ピーク形状から得られる情報としては、ピーク値(*Max*)、 ピークより中心側の最低値(*Min_IN*)、ピークより外側解析範 囲内(ここでは 50pixel)の最低値(*Min_OUT*)、ピークより外 側解析範囲内の平均値(*Avg_OUT*)などが挙げられる. *Mid Point*は、*Avg_OUT*より上側のピーク形状を2等分する位置 である. この *Mid Point*を解析粒子の特徴長さとした.

3.3 誤検出粒子の排除

粒子の検出精度を向上させるためには, 誤検出した粒子を 排除する必要がある.図6右は誤検出された粒子の例であり, 複数の粒子が二値化の際に1つの粒子として検出されている. 左上図の輝度分布を見る限りでは,図4の単一粒子に比べて 違いは明らかであるが,この分布からアルゴリズムで検出し やすい特徴は見出せない.次に左下図の輝度勾配分布を見る と,図5のような単一粒子で見られた特徴的なピークがみら れない.したがって,誤検出の判断材料として輝度勾配のピ ークの有無を用いることとし,ピークの程度を測る判断基準 として以下を定義した.

$$Ratio_{IN} = \frac{Max - Min_{IN}}{Max - Min_{OUT}}$$
(3)

$$Ratio_OUT = \frac{Avg_OUT - Min}{Max - Min}$$
(4)

ここで, Min は Min_IN と Min_OUT の小さい方である. Ratio_IN は大きいほど, また, Ratio_OUT は小さいほどピ ークが高くなる.これらのピーク形状の他に, 粒子形状その ものにも注目し, 以下の判断基準を定義した.

$$prdev = \sqrt{\frac{\sum \left(r(\theta) - r_{ave}\right)^2}{n}}$$
(5)

ここで, n は粒子周囲上の解析点数である. prdevは, 平均半 径と実半径の差の総和であり, 粒子像が真円に近いほど 0 に 近づく.

3.4 液滴粒子径の校正

撮影した噴霧液滴の直径を定量的に求めるため、噴霧液滴 と同程度のサイズの模擬粒子をガラス面上に散布して固定し, 本撮影光学系による撮影,および拡大率4倍の顕微鏡撮影を 行い、これらを比較した. 撮影結果の一部を図 7 に示す. 顕 微鏡の撮影像から,個々の粒子の直径を測定した.測定した 粒子数は約1000個で,それぞれについて位置と直径を同定す ることにより、フィルム像上の粒子像に対応させた. 図8は 模擬粒子撮影像において,前述の Mid Point と実測直径の相 関を示したもので、ばらつきは多いが相関が見られる.この ばらつきは多くが誤検出によるもので,この誤検出を排除す る必要がある.したがって、前述の誤検出判断基準である Ratio_IN, Ratio_OUT, prdevにおいて, それぞれ 0.6 以上, 0.3 以下, 1.5pixel 以下という基準を設けて, これらを満たさ ない検出結果を排除した結果を図 9 に示す. これらの基準値 は、過度に設定すると誤検出排除が過度に行われるため、特 に誤検出の多い Mid Point 10pixel 以上の領域で誤差が 10% 以下となるよう試行錯誤法により求めた. 図 9 では、ごく一 部を除き多くの検出点がある1本の曲線近くにあることがわ

Fig. 6 Intensity and gradient of intensity profiles on irregular particle detection case.

Fig. 7 Comparison of the particle images.

Fig. 8 Correlation between Mid Point and actual diameter of particles.

かる. この曲線を Mid Point で多項式近似することで,画像 から求めた Mid Point を用いて粒子直径を算出することが可 能になる.上記方法を用いて実際の噴霧液滴粒子像を検出し た例が図 10 である. 図中の四角で囲まれた液滴が検出された 液滴であり,重なり合った液滴や,境界がはっきりしない液 滴は検出されておらず,本検出アルゴリズムが有効に機能し ていることがわかる. 3.5 被写界深度外粒子像の処理および計測精度の検証 燃料噴霧は三次元に分布するため, 被写界深度外の粒子は 境界が不明瞭にぼやける.この影響を調べるため,焦点位置 から外れた位置に模擬粒子群を設置して撮影を行い、上記ア ルゴリズムで解析を行った. 図 11 に結果を示す. 0.5mm 焦 点位置から外した場合, Mid Point と実直径の関連は焦点位置 での結果とほとんど違いがない. 一方 1.5mm では, Mid Point に対して実直径が小さくなる傾向にあるが、粒子の検出数が 低下する上に誤検出も増えるため、全検出数は焦点位置での 場合に比べて大幅に低下する.したがって、焦点位置から 1.5mm 以遠の被写界深度外の撮影粒子像は、本アルゴリズム ではほとんど検出されないといえる.以上を踏まえ、本測定 で用いる Mid Point と実直径の相関式には、図9に示す誤検

Fig. 9 Correlation between Mid Point and actual diameter of particles filtered by Ratio_IN, Ratio_OUT, and prdev

Fig. 10 Example of the elimination of miss-detected particles

出を排除した焦点位置での検出結果から得られる、二次の多 項式近似曲線を用いることとした.

Mid Pointから粒子の実直径を推定するにあたり,算出され る粒子直径の精度を検討する.図9より, Mid Point と実直径 の関係は上向きに凸の形をしており、粒子直径が小さくなる ほど検出精度が低下しやすくなる. すなわち, 例えば Mid Point が 12-13 pixel 区間には実直径が 45-50 µm の粒子が存在 するのに対し、5-6pixel 区間には実直径が 4-25μm の幅広い範 囲の粒子が存在している. これは小径粒子の場合には粒子像 境界のぼやけた領域の幅が、直径に対して相対的に大きくな るためである. 図 9 から, Mid Point を例えば 4-5, 5-6 pixel のように 1pixel 区間ごとに分け、各区間の Mid Point に算出 された粒子群に対し、それらの実直径の標準偏差/平均直径

Fig. 11 Effect of deviation from focal point on correlation Mid Point and actual diameter of particles.

Fig. 12 Relation between accuracy of particle diameter measurement and particle diameter

Table 1 Experimental conditions							
	Base	Early	High P _{inj}	High T _i			
Ambient temperature K	298	298	298	700			
Fuel injection pressure MPa	40	40	70	40			
Time from start of injection ms	0.50	0.25	0.50	0.50			
Ambient gas	$N_2: Ar = 25vo1\% : 75vo1\%$						
Ambient density	15 kg/m ³						
Injected fuel	JIS#2 diesel fuel						
Nozzle type	Mini sac, Single hole						
Nozzle hole diameter	0.18 mm						
Analyzed particle number	1666	823	2232	411			

Downstream (DW) Fig. 13 Macroscopic and microscopic images of sprays

を測定誤差として区間ごとに求めた. 図 12 は各区間の平均直径に対して測定誤差を〇で示したもので、粒子径が約 10µmでは測定誤差は約 40%となる. これは同計測で得られた 1 個の粒子についての計測精度であり、計測によって同程度の直径と算定された n 個の粒子群がある場合、粒子群の実直径の標本平均は、統計的に $1/\sqrt{n}$ 倍の標準偏差、すなわち測定誤差を持つ. したがって、測定精度が低下する小粒径粒子に対しては、測定粒子数を増やすことで測定精度を向上させることが可能となる. 測定精度を 5%にするための測定粒子数を粒子直径に対して図 12 中に Δ で示す.本測定の限界に近い 10µm程度では、計測粒子数を約 60 個以上とすることで測定精度を 5%以下にすることができる.

4. 実験結果

燃料噴霧特性の実験パラメータに対する依存性を明らかに するため、燃料噴射開始を基準とした撮影時刻、燃料噴射圧 力、雰囲気温度の3種類のパラメータを、それぞれを基準条 件(雰囲気温度 T_i=298K,燃料噴射圧力 P_{inj}=40MPa,撮影時 刻 tsor=0.5ms)から変化させ、全4条件について噴霧撮影と 粒径計測を行った.実験条件の詳細を表1に示す.

4.1 撮影噴霧像の比較

図 13 に噴霧の撮影像を示す. 燃料噴射軸はノズル軸および 撮影軸に対して 15°傾いており,噴射軸に対して撮影像を回 転させ表示している. 各画像からは□で囲んだノズル近傍 (UP),噴霧中流域(MD),噴霧先端付近(DW)の3ヶ所を 1.5× 2mm 角で切り取り拡大表示した.

巨視的な噴霧挙動を基準条件に対して比較すると,撮影時 刻が早期の条件(t=0.25ms)では,噴霧先端到達距離は短い ものの,基準条件と比較して噴霧の挙動には目立った差異は ない.一方,噴射圧力を高くした条件(P_{inj}=70MPa)では, 噴霧先端到達距離が大きく,噴霧中流域での噴霧の広がりも 基準条件に比べて大きくなっている.また,ノズル近傍では 噴霧角が小さくなっている.雰囲気温度を上昇させた条件 (Ti=700K)では,噴霧先端到達距離,噴霧中流域の広がり の程度は基準条件に比較して大きな違いは見られない.ノズ ル近傍では,基準条件に比べて噴霧角がわずかに小さくなっ ている.

基準条件において各部位の拡大画像を比較すると、上流部 では噴霧の主流に対して周囲への液滴の飛散が少ない.一方 中流域では、周囲雰囲気中に飛散する液滴数が多く、蒸発条

Fig. 14 Variation of Number density along the spray axis

Fig. 15 Particle diameter distribution in each part of spray

件ではこの領域で液滴の蒸発により適度な濃度の燃料空気混 合気が形成されると考えられる.噴霧先端領域ではある程度 燃料の微粒化が生じているが,液滴密度が高く周囲空気への 燃料液滴の飛散はごくわずかである.

基準条件に対し,実験条件を変化させた場合の噴霧を部位 ごとに比較すると,撮影時刻が早期の条件では,噴霧の巨視 的挙動の場合と同様に各部位の様子についても大きな違いは 見られない.

噴射圧力を高めた条件では、基準条件に比べ噴霧角は小さ いものの、ノズル近傍においても液滴の飛散が多く見られる. 中流域では噴霧全体像からは噴霧の存在が確認できないよう な位置にも燃料液滴が飛散しており、噴射圧力の高圧化によ って中流域での燃料と空気の混合がより促進されると考えら れる.噴霧先端では、基準条件に比べて燃料濃度が高くなっ ている.高圧噴射の場合、噴射開始直後の t=0.5ms において 噴霧中心軸では噴霧が高速高密度に保たれて進展するため、 噴霧先端部では周囲気体と高密度燃料が衝突し、燃料濃度が 高くなると考えられる.また、噴霧の進展とともに噴霧境界 にはいわゆる枝状構造が形成され、ここから生成する液滴の 数が増加するとともに微粒化する.これと噴霧への周囲気体 導入により微粒化および混合は噴霧先端よりも噴霧境界で早 期に行われると思われる.

標準条件ではノズル近傍と噴霧先端付近で特徴的な違いは 見られないのに対し,周囲気体温度を高めた条件では,噴霧 中流域の噴霧境界で燃料の一部が蒸発し燃料蒸気が見られる. 液滴の一部は燃料蒸気領域を貫通し,単独で周囲の高温空気 中を飛翔していることがわかる.

4.2 粒径解析結果

前節の撮影画像に対し,確立した粒径計測アルゴリズムに より,各種条件下での燃料噴霧液滴の粒径分布を測定した. なお,測定液滴数を増やして測定精度の向上を図るため,各 条件につき2回ずつ実験を行った.

粒径の空間分布をさらに詳しく見るため,噴霧長さを五等 分し,各領域について検出液滴密度を算出した.検出液滴密 度は噴霧軸方向の単位長さあたりの液滴数とし,各条件2回 の実験結果から得られた合計の検出数を,実験繰り返し数で 除して1回分の値とした.図14に,噴霧全長で無次元化した 噴霧位置に対し,検出液滴密度を示す.

検出液滴密度は、早期撮影の条件を除き噴霧中流域で液滴 密度が大きくなっている.ノズル近傍の上流域では、図13 に 示すように噴霧燃料が液柱状態で、計測される単独液滴の数 が少ない.一方先端付近の下流では図13 に示すように液滴密 度が非常に高いため、検出可能な単独液滴数が減少する.早 期撮影の条件では、より下流で液滴密度が大きくなっている が、早期撮影条件では噴霧長が短いため、液滴が少ないノズ ル近傍領域の長さが相対的に長くなったためである.

図15に、各実験条件における噴霧の液滴径分布を示す.噴 霧はノズル出口から噴霧先端までを上流(UP)・中流(MD)・下 流(DW)で三等分し、それぞれの領域の液滴径頻度を示してい る.縦軸はある直径区間にある液滴数 n を計測された全液滴 数 N で割った値である.前述のように、小粒径の液滴ほど測 定精度が急激に低下するため、解析液滴数が多い方が望まし い.このため、噴霧の各領域での検出液滴数を多くすべく、 解析領域の分割は三分割までとした.また、計測した総液滴 数を表 1 に、各領域での計測液滴数を図 15 中に示す.液滴を 検出しにくい高温条件において、単独液滴が比較的少ない噴 霧上流と、下流の 2 領域において、液滴径が 10・15µm と検出 された液滴数はそれぞれ 30 以上であり、この場合得られる粒 径の測定誤差は 7%以下である.したがって、本解析は高温条 件において粒径が 10µm 以上で測定誤差は 7%以下であると 言える.同様に、標準条件と早期撮影条件では 10µm 以上で 4%以下,高圧噴射条件では3%以下である.

図 15(a)に示す標準条件では,噴霧の3領域いずれも同様の 粒径分布が見られ,ピークは 15·20 µm である.大粒径側では 約 40 µm 以上の液滴はほとんど観測されていない.図 15(b) の撮影時刻が早期の条件では,噴霧上流域は中流・下流域に 比べて確率密度のピークがより小粒径側の 10 µm 付近に見ら れ,かつピークが鋭い.中・下流領域のピーク位置は標準条 件よりもわずかに小粒径側に位置する.したがって,これら を比較すると噴射初期には噴霧上流で粒径の小さな液滴が現 れ,時間の経過とともに小粒径の液滴割合は減少して噴霧全 体で粒径分布が平滑化される傾向にあると考えられる.これ は噴射初期に噴霧上流で生成した小粒径の液滴が周囲空気と ともに噴霧に取り込まれるためである⁽⁹⁾と考えられる.

次に図 15(c)の高圧噴射条件では、噴霧の上流側ほど粒径分 布のピークが小粒径側に移動し、いずれの領域でも標準条件 より小粒径側でピークが見られる.したがって、燃料噴射圧 力の高圧化により、観測を行った噴霧境界全域で燃料液滴が より微細化される.

図 15(d)の高温雰囲気条件では、下流領域のピーク位置が標 準条件と同程度であるのに対し、上・中流領域でピーク位置 が小粒径側にずれている.噴霧先端では高速高密度燃料流と 周囲空気の衝突により多数の液滴が生成されると考えられる. 一方、上・中流領域では、長時間高温雰囲気に暴露された液 滴が多く、これらが蒸発するために小粒径の頻度が高くなる と考えられる.

5. おわりに

長距離顕微シャドウグラフ光学系によって撮影したディー ゼル噴霧の燃料液滴群の粒径解析を行うため、新たな液滴検 出アルゴリズムによる粒径解析プログラムを構築した.本プ ログラムを用いた解析により、以下の知見を得た.

- (1)本解析手法により、多数の液滴直径・位置の分布を統計的に解析することが可能となった.しかし、本解析では小粒径になるほど計測値の信頼性が低下するため、信頼性を高めるためには十分な計測液滴数が求められる.
- (2) 噴射初期には液滴径は噴霧上流で小さく,噴霧先端側ほど大きくなる.この液滴粒径分布は,時間の経過に伴って噴霧全体で平滑化される傾向にある.
- (3) 噴射圧力の高圧化は、観測を行った噴霧境界全域にわた って噴霧液滴径の微細化をもたらす。
- (4) 雰囲気温度が高温の蒸発条件では、非蒸発条件に比べて 噴霧上流と中流域で液滴の微細化が見られ、噴射初期に はこれらの領域で早期に蒸発が進行すると考えられる。

文 献

- J. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbott, and C. G. McCreath: A Laser Diagnostic Technique for the Measurement of Droplet and Particle Size Distribution, Prog. Astronaut. Aeronaut. 53, (1977), 421-447
- (2) F. Durst. M. Zare, Laser Doppler measurements in two-phase flows, Proc. LDA Symposium, Copenhagen, (1975), 403-429
- (3) 新井 雅隆,岸 次男,廣安 博之:レーザー回折を応用した粒径解析装置の特性と噴霧の粒度分布測定,日本機械学会論文集 B 編, 50-449 (1984),98-106
- (4) A. Mohammadi, Y. Kidoguchi, K. Miwa: Effect of Injection Parameters and Wall-Impingement on Atomization and Gas Entrainment Process in Diesel Sprays, SAE Paper NO.2002-01-049 (2002)
- (5) Abdullah Adam, Tomonori Gomi, Tomoaki

Yatsufusa, Yoshiyuki Kidoguchi and Kei Miwa, Analysis of Droplet Evaporation Process of Diesel Spray during Ignition Delay Period, COMODIA08, (2008), 377-382

- (6) 石山 拓二, 三輪 惠, 鴨川 正博, 劉 育民, 宮城 勢治: ナノスパーク光源によるディーゼル噴霧の微細構造の観察, 日本機械学会論文集 B 編, 60-570 (1994), 715-721
- (7) 劉 育民,石山 拓二,三輪 恵:ディーゼル噴霧の液滴画 像解析法に関する研究,日本機械学会論文集 B 編,61-585 (1995), 1948-1954
- (8) 竹内 貴一郎,村山 博美,千田 二郎,山田 耕司:定圧 容器内のディーゼル噴霧の粒度分布について,日本機械 学会論文集 B 編,48-433 (1982),1801-1810
- (9) AliMOHAMMADI, 阿部 誠, 三輪 恵:ディーゼル噴 霧の液滴群の挙動と周囲気体の導入過程に関する研究, 日本機械学会論文集 B 編, 64-625 (1998), 3106-3122

